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Abstract

The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley patho-

gens with the potential to cause high yield losses through an epidemic spread. The identifi-

cation of QTL conferring resistance to these pathogens is the basis for targeted breeding

approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars.

Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to

broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested

association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL

in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 genera-

tion. By scoring the percentage of infected leaf area, followed by calculation of the area

under the disease progress curve and the average ordinate during a two-year field trial, a

large variability of resistance across and within HEB-25 families was observed. NAM based

on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for

resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe

rust and two QTL for leaf rust are considered novel showing no overlap with previously

reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due

to the accumulation of numerous small effect loci. In addition, the NAM results indicate that

the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual

effect on rust resistance. In future, the NAM concept will allow to select and combine individ-

ual wild barley alleles from different HEB parents to increase rust resistance in barley. The

HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to

improve resistance against stripe rust and leaf rust of modern barley cultivars.

Introduction

The biotrophic rust fungi Puccinia hordei (Ph), causing leaf rust, and Puccinia striiformis f. sp.

hordei, (Psh), the causal agent of stripe rust, are important barley pathogens in many barley
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growing areas worldwide [1, 2]. The ability of the two rust fungi to spread across large dis-

tances, rapidly increase in population size, and mutate quickly [3–5] results in a high risk for

severe epidemics. Infection can cause yield losses of up to 62% in case of Ph and up to 70%

in case of Psh and reduce grain quality under epidemic conditions [6–8]. Depending on en-

vironmental conditions, there is a high variability in disease severity between years. While Psh
in general has been of minor economic importance over the last several decades the impor-

tance of Ph has increased [4, 5, 9–11]. Nevertheless Psh remains a major economic threat,

especially for barley production in Australia where it is not yet present, as studies in Mexico

identified that 70% of Australian barley varieties are susceptible to the aggressive Psh race 24

[12, 13].

Although both fungi can be controlled by timely fungicide application, emphasis should be

laid on resistance breeding as a cost effective, environmental, and consumer-friendly alterna-

tive [4, 14, 15]. Most promising in this regard is to breed for cultivars exhibiting both race-spe-

cific and non-race specific resistances [16].

Up to now 25 major genes (Rph1-Rph24) and RphMBR1012 conferring resistance to Ph have

been reported of which all but one were assigned to chromosome regions [5, 17, 18]. Out of

these, Rph15, Rph16, and RphMBR1012 [17, 19, 20] are still effective in Europe, whereas in Israel,

Morocco, Spain, and the USA Rph7 has already been overcome by new Ph races [21–24].

Given the ability of the fungus to spread across large distances and to mutate quickly, it is only

a matter of time until still effective Rph genes will be overcome as well. The identification of

race non-specific quantitative resistance and its introgression into modern barley cultivars is

therefore of highest importance. Numerous studies focusing on resistance of barley to Ph
resulted in the identification of a high number of QTL located on all barley chromosomes

[25–39].

Over the last several decades less research has been conducted on resistance of barley to Psh
due to its significantly lower importance compared to Ph. However, 26 uniquely different Rps
(Resistance to Puccinia striiformis) major genes (reviewed in [40]) and several QTL [11, 38, 41–

53] have been reported up to now.

In almost all studies focusing on the identification of QTL and genes conferring resistance

to Ph or Psh bi-parental linkage mapping (LM) was applied. Association mapping (AM) to

detect resistance QTL was, to our best knowledge, applied in only one study for resistance to

Psh [44] and in two studies for resistance to Ph [35, 36]. Furthermore, Schnaithmann et al.

[25] applied a nested association mapping (NAM) approach based on an explorative multi-

parental NAM population to detect QTL conferring seedling resistance to Ph. A large-scale

NAM study based on field trials to identify resistance QTL has not been conducted yet for

either of the two fungi.

NAM is based on a multi-parental mapping design introduced by Yu et al. [54] as a

genome-wide association strategy to dissect the genetics of complex traits. NAM combines the

advantages of conventional LM and AM strategies, namely the high detection power per SNP

and the high allelic richness, allowing for an exceptional high mapping resolution [54–56].

Next to several studies based on the initial maize NAM population [54, 55, 57–64], NAM stud-

ies were conducted in a second maize NAM population [65], sorghum [66], wheat [67, 68] and

barley [25, 69–76] highlighting the power of this mapping approach.

Until now, the world’s first barley NAM population introduced by Maurer et al. [69]

named ‘Halle Exotic Barley 25’ (HEB-25) has not been used to identify QTL linked to resis-

tance to biotrophic fungi. Thus, in this study the genetic diversity present in HEB-25 com-

bined with the exceptional high mapping resolution offered by NAM was used to achieve the

following objectives: I) to screen the HEB-25 population for resistance against Ph and Psh; II)

to identify QTL conferring resistance against Ph and Psh; III) to identify HEB-25 lines with
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strong resistance, suitable to be introduced in pre-breeding programs; IV) to compare QTL

positions detected in this study with those previously reported in literature, and V) to identify

putative candidate genes underlying the identified resistance QTL.

Material and methods

Plant material

This study is based on the HEB-25 NAM population [69]. HEB-25 comprises 1,420 BC1S3

lines in 25 families, originating from crossing 25 highly divergent wild barley accessions (Hor-
deum vulgare ssp. spontaneum and H. agriocrithon) with the modern spring barley cultivar

Barke (Hordeum vulgare ssp. vulgare). For more detailed information on population develop-

ment see Maurer et al. [69]. Due to a loss of genotypes during field trials, the analysis is based

on 1,401 genotypes of the HEB-25 population.

Field trials

Field trials were conducted at the Julius Kuehn-Institute, Federal Research Centre for Culti-

vated Plants, in Quedlinburg, Germany, during the seasons 2014 and 2015 using a randomized

incomplete block design with two replications. Screening for resistance to Ph and Psh was per-

formed in separate field trials. Genotypes were sown in double rows of 1 m length with 25

plants per row and spacing of 0.2 m between rows in mid-March in both years. Incomplete

blocks were surrounded by spreader strips of susceptible varieties. Spreader strips were spray

inoculated with an oil-spore mixture using a hand-held spinning disc sprayer (ULVA+,

Micron Sprayers, Bromyard, Herefordshire, U.K.) to ensure homogeneous disease pressure. A

1:1 mixing ratio of rust spores in mg to oil in ml (Isopar M, ExxonMobil Chemical Company,

Spring, TX, USA) and 100 ml of suspension per 30 m2 was used for inoculation. Starting at

shooting, spray inoculation was performed at three dates early in the morning when dew for-

mation was observed. For leaf rust (Ph) trials isolate I-80 was used, a very destructive leaf rust

isolate overcoming common major resistance genes in the European barley gene pool, except

Rph7, Rph15, Rph16, and RphMBR1012 [17, 19, 20]. The virulence of I-80 against Rph17–Rph24
has not been surveyed yet. For stripe rust (Psh) trials, the very aggressive race R-24 was used,

which is wildly spread in Europe and the Americas [4, 7, 53].

Phenotypic data

Percentage of infected leaf area (PILA) was recorded at three subsequent dates according to

Moll et al. [77], starting when disease symptoms were clearly visible in the susceptible spreader

strips. A time period of two weeks between phenotyping dates was chosen to allow for suffi-

cient disease development. Based on PILA data the area under the disease progress curve

(AUDPC) was calculated for each genotype. AUDPC data were then used to calculate the aver-

age ordinate (AO [78]) for each genotype as a measure of infection severity:

AO ¼
PNi� 1

i¼1

ðyiþyiþ1Þ

2
� ðtiþ1 � tiÞ

tp

where (N) is the total number of observations, disease level at the ith observation is coded by

(yi), time at the ith observation is coded by (ti), and the total trial period in days is coded by (tp).

Statistical analysis

Phenotypic data analysis was performed using the software package SAS 9.4 (SAS Institute

Inc., Cary, NC, USA) using proc mixed. Genotype, year, and genotype x year interaction were
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set as fixed effects. Design effects were set as random statement. Separate co-variances were set

for years to account for the difference in disease pressure between years. To meet the require-

ments of mixed linear model analysis, phenotypic raw data was log10 transformed before

applying the mixed procedure. Obtained AO log10 least squares means (lsmeans) were used

for subsequent nested association mapping (NAM). To estimate variance components to be

used for the calculation of broad sense heritability (h2) all model parameters were set as ran-

dom. Broad sense heritability across years was calculated as:

h2 ¼
VG

VG þ
VGY
y þ

VR
yr

where genotypic variance is coded by (VG), genotype x year variance is coded by (VGY), and

residual variance is coded by (VR). The terms y and r represent the number of years and repli-

cates, respectively.

Pearson’s correlation coefficients were calculated with proc corr, using lsmeans per geno-

type as input.

Nested association mapping

SNP genotyping was carried out using the barley Infinium iSelect 9K chip consisting of 7,864

SNPs [79]. SNPs showing >10% failure rate, >12.5% heterozygous calls, or being monomor-

phic over all 1,401 HEB lines were removed from the dataset. SNP filtering resulted in 5,715

informative SNPs used for NAM with an average genetic distance of 0.17 cM and a maximum

gap of 11.1 cM between adjacent markers. Linkage disequilibrium (LD) across HEB-25 was

calculated as r2 between all mapped SNPs, excluding heterozygous genotypes, with the soft-

ware package TASSEL 5.0 [80]. LD decay across intra-chromosomal SNPs was displayed by

plotting r2 between SNP pairs against their genetic distance. A second-degree smoothed loess

curve was fitted in SAS with proc loess. The population-specific baseline r2 was defined as the

95th percentile of the distribution of r2 for unlinked markers [81]. LD decay was defined as the

distance at which the loess curve crosses the baseline. An identity-by-state approach was used

to differentiate HEB genotypes. Parental genotype information enabled the identification of

the exotic donor allele in each segregating HEB family. HEB lines showing a homozygous

Barke genotype were assigned a value of 0, HEB lines showing a homozygous exotic genotype

were assigned a value of 2, and heterozygous HEB lines were assigned a value of 1. Failed SNP

calls were assigned a value using the mean imputation (MNI) approach [82]. For detailed

information see Maurer et al. (2015). Assignment of SNPs to chromosomal positions was

based on Comadran et al. [79] and Maurer et al. [69].

NAM was performed using Model B of Liu et al. [83] verified to be best suited for genome-

wide association studies (GWAS) based on family-structured populations [84] and successfully

applied in previous HEB-25 studies [69–71]. Model B is a multiple regression model including,

next to a quantitative SNP effect and a qualitative family effect, quantitative cofactors that cor-

rect for population stratification and genetic background noise [84]. Marker trait associations

were estimated by stepwise forward-backward regression based on minimizing the Bayesian

information criterion (BIC [85]) taking into consideration all informative SNPs. Analysis was

carried out with SAS 9.4 applying the proc glmselect procedure. SNPs were allowed to enter or

leave the model at each step until the BIC estimate was not reduced any further. SNPs included

in the final model were defined to be significant.

To increase the robustness of identified marker trait associations, a five-fold cross-valida-

tion (CV) was performed. In total, 200 CV runs (40 times five-fold CV) were performed. For

this, 200 subsets were extracted out of the full genotype set. Each subset included 80% of
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genotypes of the full population, randomly selected per HEB family. The subsets were taken as

training sets for the identification of significant marker trait associations and for estimation of

additive effects. The remaining 20% of genotypes were used as the validation set. Subsequently,

the count of each significant marker over all training sets was recorded and referred to as

detection rate (DR). This value was taken as a measure of robustness of the marker trait associ-

ation. Markers with a DR of>50% were defined as robust and used to assign resistance QTL.

Additive effects for each SNP were extracted as regression coefficient of the respective SNP

directly from the NAM model described above. To obtain final estimates, additive effects of

significant markers were averaged across all runs. Likewise, final R2 values for significant SNPs

were obtained by averaging R2 values of significant markers across all cross-validation runs.

This way, the R2 value can be interpreted as the percentage of variance explained by the inves-

tigated SNP marker.

A standard QTL interval of ±4 cM around the markers with a DR>50% was defined, repre-

senting the LD decay in HEB-25 (S1 File). In case the QTL was composed of more than one

marker with a DR>50%, the marker showing the highest DR across all 200 cross-validation

runs was defined as peak marker. QTL showing overlapping QTL intervals were combined to

a single QTL interval.

To estimate the proportion of phenotypic variance explained by the full model, the unbi-

ased estimator R2
adj [86] was calculated for each subset by simultaneously modeling all of the

significant markers in the linear model described above.

To determine the predictive ability R2
pred of the full model for infection severity, the addi-

tive effects of markers estimated using the training sets were used to predict the phenotypic

value of the remaining 20% of genotypes forming the validation sets [87]. Following Maurer

et al. [70] R2
pred was defined to be the squared Pearson product-moment correlation between

predicted and observed phenotypic values. Subsequently, R2
adj and R2

pred values were averaged

over all 200 CV runs to obtain final estimates.

Additional to the detection of marker trait associations across families, parent-specific QTL

effects were calculated following the approach of Maurer et al. [72]. In a first step, the peak

marker (SNP with highest DR>50% across all 200 cross-validation runs) of each QTL was

selected and placed central in a 26cM interval (obtained through simulation studies and repre-

senting the mean introgression size in HEB-25) to look for significant SNPs in this region.

Due to model limitations reported in Maurer et al. [72] population-wide QTL located within

this interval were pooled into one single parent-specific QTL. Subsequently, ‘Model-B’ SNP

effect estimates of all markers within this interval were cumulated for each of the 25 donors,

following
Pn

i SNP ðdonorÞi�ai, where (i) iterates through all significant SNPs (n) in the respec-

tive QTL interval. SNP (donor)i represents the quantitative IBS donor genotype (i. e. 0 vs. 2) of

the ith significant SNP and αi denotes the SNP effect estimate of this SNP obtained from

‘Model-B’. Since SNPs show different IBS segregation patterns across the donors of HEB fami-

lies a different cumulated effect was obtained for each donor. This procedure was conducted

within each of the 200 cross-validation runs. Subsequently, the mean effect across all cross-val-

idation runs was calculated and taken as the final parent-specific QTL effect estimate.

Comparison with previously identified QTL and analysis of identified QTL

intervals

GrainGenes (https://wheat.pw.usda.gov/GG3/) and IPK Gatersleben (http://www.ipk-

gatersleben.de/datenbanken/) databases were used to obtain marker information of previously

reported QTL for Ph and Psh resistance. If available, this information was used to check for

overlap of resistance QTL identified in this study with those already reported. The
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BARLEYMAP pipeline [88] was used as a common reference. Using this pipeline, the peak

marker as well as flanking markers for known Ph and Psh resistance QTL and markers identi-

fied in this study showing a DR>50% were blasted against the POPSEQ map [89] and the bar-

ley physical map [90]. Markers with a DR>50% identified in this study and located in a

genetic distance of less than 4 cM (representing the LD decay in HEB-25, see S1 File) to mark-

ers of known resistance QTL were defined as potentially corresponding to previously reported

resistance QTL. In addition, previously reported QTL, for which no marker information could

be obtained, were compared to QTL detected in this study based on information given in the

respective publication.

In addition, the BARLEYMAP pipeline [88] was used to identify potential candidate genes

underlying the robust QTL of this study by aligning the associated markers showing a DR

>50% against the barley physical map [90] and the POPSEQ map [89]. The gene search was

extended to an interval of ±4 cM around markers with a DR>50% to account for the LD

decay in HEB-25. Gene ontology (GO) terms defining defence response (0006952, 0050832),

apoptotic process (0006915), peroxidase activity (0004601), response to (oxidative) stress

(0006979, 0006950), ATP binding (0005524), nucleotide binding (0000166), protein binding

(0005515), transporter activity (0005215), and protein kinase activity (004672) were used to

validate genes involved in resistance reactions [91]. Furthermore, GO terms defining reactions

potentially involved, e.g. catalase activity, chitinase activity, cell wall peroxisome, cell wall

modification, and defence response to fungi, were considered too (S2 File).

Results

Phenotypic analysis

Artificial infection resulted in a moderate disease pressure in both years, despite dry weather

conditions impeding the initial infection process in the beginning of field trials. Nevertheless,

experimental conditions allowed for an unequivocal scoring of resistance to Psh and Ph. A

large variation concerning resistance was detected in the HEB-25 population for both patho-

gens. Significant differences (p<0.0001; Tukey-test) were observed between as well as within

families in both cases (Fig 1A and 1B; S3 File). HEB families 1, 3, and 25 showed the highest

resistance to both pathogens based on the AO median.

AO values ranged from 0% up to 39.2% in case of Psh and from 0.4% up to 29.5% in case of

Ph (Table 1). AO frequency distributions of the HEB-25 population showed to be highly right

skewed for both rust fungi, with Psh results showing slightly stronger skewness (S4 File). For

Ph, cultivar Barke showed an intermediate degree of resistance compared to the wild donor

parents, whereas in case of Psh the common parent Barke showed a very high degree of

resistance.

In most cases, a higher susceptibility of wild accessions to Psh than Ph was observed. The

wild donor of family 25 showed, among all wild donors, the highest resistance to both patho-

gens (S5 File). In general, only a weak correlation (Pearson’s correlation coefficients; p<

0.0001; Tukey-test) of r = 0.28 between Psh and Ph infection of genotypes was identified across

the whole HEB-25 population. Two-year broad sense heritability was calculated as h2 = 0.70

for Psh and h2 = 0.60 for Ph (Table 1).

Nested association mapping

NAM was performed separately for each trait and resulted in the identification of numerous

marker trait associations across HEB families (Fig 2; S6 File). However, most of the marker

trait associations showed a DR below 50%. NAM based on Psh data resulted in the identifica-

tion of 12 robust resistance QTL being composed of one or more markers with a DR higher
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than 50%, whereas NAM based on Ph data allowed to identify 11 robust resistance QTL

(Table 2). For Psh QTL were identified on all chromosomes except chromosome 4H, whereas

for Ph resistance QTL were identified on all chromosomes except chromosomes 1H and 3H

Fig 1. Box-whisker plots per HEB family indicating the variation in genotype response to the two fungi. (A) stripe rust (Psh) and (B) leaf rust (Ph)

infection. HEB-25 families (1–25), sorted by ascending median, and rust severity are depicted on x-axis and y-axis, respectively.

https://doi.org/10.1371/journal.pone.0191666.g001

Table 1. Descriptive statistics for two-year field trials in Quedlinburg and heritability.

Traita Nb Mean

Barkec
Mean

HEB-25d
Mine Maxf SE+/-

g CVh h2i

AOPsh 1401 3.31 6.72 0 39.23 0.15 0.85 0.70

AOPh 1401 10.97 7.36 0.40 29.52 0.11 0.58 0.60

aAverage ordinate for stripe rust (AOPsh) and leaf rust (AOPh), respectively.
bNumber of genotypes analyzed.
cMean average ordinate of recurrent parent Barke.
dMean average ordinate of the HEB-25 population.
eMinimum.
fMaximum.
gStandard error.
hCoefficient of variation.
iBroad-sense heritability.

https://doi.org/10.1371/journal.pone.0191666.t001
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Fig 2. Circos plot indicating QTL controlling stripe rust and leaf rust resistance across HEB families. The barley chromosomes are arranged as coloured bars

forming the most inner circle. Centromere regions are highlighted as transparent boxes. (A) Grey connector lines represent the genetic position of the 5,715

informative SNPs on the chromosomes with cM positions (based on Maurer et al. 2015) given on the scale outside of circle C. (B) Marker trait associations

calculated for leaf rust data (AOPh). Bars identify the position and detection rate (DR, height of bars) of significant marker trait associations. Bars in blue,

pointing inwards, indicate a population wide trait-decreasing effect exerted by the wild barley allele, whereas bars in red, pointing outwards, indicate a

population wide trait-increasing effect exerted by the wild barley allele. The grey and orange lines depict the DR threshold of 10% and 50% across 200 cross-

validation runs. (C) Marker trait associations calculated for stripe rust data (AOPsh). Graphical representation are the same as described under (A). The position

of the 23 robust QTL with DR>50% are indicated on the scale outside of circle C. QTL for stripe rust and leaf rust resistance are coded with QPs and QPh,

respectively.

https://doi.org/10.1371/journal.pone.0191666.g002
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Table 2. Robust stripe rust and leaf rust resistance QTL in HEB-25, detected with DR>50%.

QTL Chra Peak marker with DR

>50%b
Position of peakmarker

(cM)c
DR in 200 CV runs

(%)d
CV mean R2

(%)e
CV mean

effectf
Corresponding resistance QTL/

genesg

Stripe rust

(Psh)

QPs.1H-1 1H i_SCRI_RS_136856 95.6 52.5 0.53 +0.16 (+1.45)

QPs.2H-1 2H i_SCRI_RS_165171 2.0 63.0 0.54 -0.34 (-2.19)

QPs.2H-2 2H i_SCRI_RS_159228 16.8 58.5 4.39 +0.13 (+1.35)

QPs.2H-3 2H i_SCRI_RS_158091 107.9 60.5 0.68 +0.31 (+2.04)

QPs.3H-1 3H i_12_30616 59.6 50.5 2.01 +0.13 (+1.35)

QPs.3H-2 3H i_11_20146

i_SCRI_RS_235770

122.3 65.0

55.0

4.25 -0.22 (-1.66) QTL_Toojinda[48]

QTL_Yan/Chen[50]

QPs.3H-3 3H i_SCRI_RS_209285 131.7 98.0 5.61 -0.28 (-1.91)

QPs.3H-4 3H i_12_20198 142.1 80.5 0.27 +0.41 (+2.57)

QPs.5H-1 5H i_SCRI_RS_175848 131.7 87.0 12.91 +0.31 (+2.04) QTL_Cakir[52]

QPs.5H-2 5H i_SCRI_RS_138608 143.8 53.5 0.09 -0.35 (-2.24)

QPs.6H-1 6H i_SCRI_RS_162771

i_SCRI_RS_196285

43.7 64.0

60.5

2.73 -0.29 (-1.95) QTL_Hayes[49]

QTL6[42]

QTL_Toojinda[48]

QPs.7H-1 7H i_SCRI_RS_220680 125.1 57.0 0.86 +0.13 (+1.35) RpsFra[44]

Rpsx[43]

Leaf rust

(Ph)

QPh.2H-1 2H i_SCRI_RS_184395 4.5 94.5 6.00 +0.12 (+1.32) RphQ5[36]

Rph17[92]

QPh.2H-2 2H i_SCRI_RS_154135 138.6 81.0 5.48 -0.19 (-1.55) QRph.sun-2H.2[37]

QPh.4H-1 4H i_11_20670 78.4 75.0 7.67 -0.15 (-1.41) Rphq5[26]

RphQ8[36]

QTL_Hickey[35]

QPh.4H-2 4H i_SCRI_RS_148773 102.2 50.5 1.00 -0.28 (-1.91) Rph21[93]

QLr.S42-4H.a[32]

QPh.5H-1 5H i_SCRI_RS_212784 75.6 57.5 4.05 +0.08 (+1.20)

QPh.6H-1 6H i_11_20882 5.6 59.0 1.26 -0.24 (-1.74) QTL_Castro[34]

QTL_Rossi[38]

QPh.6H-2 6H i_SCRI_RS_128460

i_SCRI_RS_128181

49.1 58.5

52.5

3.29 +0.30 (+2.00) Rphq3[26]

QTL_Castro[34]

RphQ11[36]

QTL_Hickey[35]

Rph24[18]

QPh.6H-3 6H i_11_11488 118.6 65.0 0.08 -0.10 (-1.26) QTL_Backes[31]

QPh.7H-1 7H i_SCRI_RS_208186 0.2 53.0 0.30 -0.26 (-1.82) RphQ12[36]

QPh.7H-2 7H i_12_20611 91.9 56.5 2.14 -0.08 (-1.20)

QPh.7H-3 7H i_SCRI_RS_175568 116.1 59.0 2.41 -0.07 (-1.17) Rphq9[26]

QTL_Castro[34]

aChromosomal location of QTL.
bISelect name of peak marker with a detection rate (DR) >50%. In case a QTL is composed of several SNP markers, the peak marker with highest DR is shown in bold

letters.
cPosition of the QTL peak marker based on Maurer et al. (2015).
dDR of the QTL peak marker in 200 cross-validation runs in percent.
eMean percentage of phenotypic variance explained by the QTL peak marker, based on 200 cross-validation runs.
fAcross-family,population-wide mean effect of the QTL peak marker, based on 200 cross-validation runs. Positive and negative signs indicate a trait-increasing and trait-

decreasing effect of the wild barley allele compared to the Barke control allele, respectively. Values within the brackets show the effect estimates back-transformed to the

original scale.
gPreviously described stripe rust (Psh) and leaf rust (Ph) resistance QTL/genes located within the range of LD decay around the QTL marker with DR >50% identified

in this study.

https://doi.org/10.1371/journal.pone.0191666.t002
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(Table 2). Results of the two NAM studies showed that in most cases resistance QTL for Ph
and Psh map to different chromosome regions. However, three chromosome regions were

identified where Psh and Ph resistance QTL co-locate (Fig 2, Table 2). In detail, co-localisation

of resistance QTL was observed on the short arm of chromosome 2H (QPs.2H-1; QPh.2H-1),

within the centromeric region of chromosome 6H (QPs.6H-1; QPh.6H-2), and on the long

arm of chromosome 7H (QPs.7H-1; QPh.7H-3).

In both NAM studies a broad variation in the wild allele effect estimates of adjacent markers

was observed (Fig 2; S6 File). Most of the QTL detected are composed of markers exhibiting

opposed wild allele effect estimates, sometimes this holds true even for adjacent markers

(S6 File).

The Psh resistance QTL showing the peak marker with the highest DR (i_SCRI_RS_209285)

is located on the long arm of chromosome 3H. This SNP shows a negative cross-validated mean

effect, resembling a decrease of the AO value in the presence of the wild allele compared to the

Barke control allele (Fig 2; Table 2). In the Ph NAM study, the peak marker with the highest DR

(i_SCRI_RS_184395) is located on the short arm of chromosome 2H and shows a positive

cross-validated mean effect, representing an increase of the AO value in the presence of the wild

allele compared to the Barke control allele (Fig 2; Table 2).

Estimation of wild allele effect estimates of robust Psh QTL peak markers across the whole

population resulted in only small cross-validated mean effect estimates. Thus, resembling only

minor increases or decreases of AO values of genotypes in the presence of the wild allele com-

pared to the Barke control allele. Likewise, analysis of population-wide R2 values of QTL peak

markers resulted in only low to intermediate estimates in the majority of cases (Table 2). Log10

based population-wide wild allele effect estimates range from -0.35 to 0.41 When back-trans-

formed to the original scale this represents a maximum change in the AO value of 2.57% in the

presence of the wild allele compared to the Barke control allele. The explained variance of a

single QTL peak marker (R2) ranged from 0.09 to 12.91% (Table 2; S6 File).

Similar observations were made in case of Ph. Across the whole population robust Ph
QTL peak markers showed only small wild allele effect estimates and low R2 values (Table 2).

Log10 based population-wide wild allele effect estimates ranged from -0.28 to 0.30. When

back-transformed to the original scale this represents a maximum change in the AO value of

2% in the presence of the wild allele compared to the Barke control allele. In case of the Ph.

The explained variance of a single QTL peak marker (R2) ranged from 0.08 to 7.67% (Table 2;

S6 File).

The peak markers of QPs.3H-4 and QPh.6H-2 showed the highest effect estimate (0.41 and

0.30; log10-value) and the peak markers of QPs.5H-1 and QPh.4H-1 the highest R2 value

(12.91% and 7.67%) for trait AOPsh and AOPh, respectively (Table 2; S6 File).

After testing for QTL effects across HEB families, parent-specific QTL effects were calcu-

lated to obtain an effect estimate representing the combined effect of all family specific mark-

ers the QTL is composed of. Due to previously mentioned model limitations (see Material and

methods), QTL QPs.3H-2, QPs.3H-3, and QPs.3H-4 were combined to one single parent-spe-

cific QTL QPs.3H-2/3/4, as well as QPs.5H-1 and QPs.5H-2 to one single parent-specific QTL

QPs.5H-1/2.

For Psh as well as Ph, data estimation of parent-specific QTL effects revealed considerable

variation in the effect size as well as direction of the wild allele between families (S7 File). In

case of Psh only three parent-specific QTL showed the same effect direction across all families

(QPs.2H-2; QPs.3H-1, and QPs.5H-1/2), whereas this was the case for five of the parent-spe-

cific QTL identified in the NAM study based on Ph data (QPh.2H-1, QPh.4H-2, QPh.5H-1,

QPh.6H-1, and QPh.7H-3). No family showed trait-reducing effects at all parent-specific QTL,

neither for Psh nor for Ph. The maximum count of parent-specific QTL showing a trait-
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reducing effect per family was five out of nine in case of AOPsh and eight out of 11 for AOPh.

For trait AOPsh family F24 (-0.01; log10-based value) and for trait AOPh family F03 (-0.54;

log10-based value) showed the largest reducing effect summed up over all parent-specific QTL

(S7 File). Results of the Psh and Ph NAM study revealed divergence between the QTL peak

marker effect and the mean QTL effect based on the parent-specific QTL effects. For both

traits QTL peak markers exhibited in most cases the same effect direction as the mean QTL

estimate across HEB families, but differed in effect size (S7 File). Thus, NAM showed that QTL

mean effect and peak marker effect are not necessarily identical in HEB-25.

The mean percentage of phenotypic variance explained through the full model (R2
adj) was

calculated to be 73.5% for Psh and 62.6% for Ph, respectively (Table 3). Notably, in case of both

NAM studies a considerable portion of the phenotypic variance is explained by the robust

QTL peak markers (Table 2; S6 File). The predictive ability (R2
pred) of the full model for infec-

tion severity was calculated to be 42.4% for Psh and 32.3% for Ph (Table 3).

Comparison with previously identified QTL

Comparison of Ph resistance QTL identified in this study with those already reported in litera-

ture revealed that the majority of identified QTL mapped to chromosome regions known to

be linked to Ph resistance. Nine out of the 11 QTL identified in this study conferring resistance

to Ph showed overlap with marker intervals of previously reported Ph resistance QTL or

genes (Table 2). Based on available data, LD based QTL intervals of QTL QPh.5H-1 and

QPh.7H-2 showed no overlap with previously reported Ph resistance QTL or genes. In case of

Psh, less overlap of resistance QTL identified in this study with those already reported was

observed. Only four out of the 12 Psh resistance QTL identified in this study, namely QPs.3H-

2, QPs.5H-1, QPs.6H-1, and QPs.7H-1, overlapped with previously reported Psh resistance

QTL (Table 2). Four out of ten so far unknown resistance QTL for Psh or Ph, namely QPh.7H-

2, QPs.2H-1, QPs.3H-3, and QPs.5H-2, showed negative CV mean effects (Table 2), indicating

the existence of wild barley alleles conferring Ph or Psh resistance. The alignment of SNPs with

DR>50% against the physical barley map by means of the BARLEYMAP pipeline resulted in

the identification of a number of genes related to plant defence in the respective QTL intervals.

In particular, leucine-rich repeat, NB-ARC, and serine/threonine-protein kinase-like domain

genes were found at high frequency. Details are given in S2 File.

Discussion

The strong variation in infection severity of HEB-25 lines infected with Psh and Ph in field tri-

als demonstrates the high genetic diversity present within the HEB-25 population, and thus, its

suitability to identify resistance QTL using NAM. Results of this study are in agreement with

results of previous HEB-25 NAM studies that identified a comparable variation regarding

Table 3. Number of QTL and total phenotypic variance explained.

Traita QTLb R2
adj (%)c R2

pred (%)d

AOPsh 12 73.5 42.4

AOPh 11 62.6 32.3

aAverage ordinate for stripe rust (AOPsh) and leaf rust (AOPh), respectively.
bNumber of QTL defined for the respective trait.
cMean phenotypic variance explained by the full NAM model.
dMean ability to predict rust infection severity of independent genotypes.

https://doi.org/10.1371/journal.pone.0191666.t003
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developmental traits [69, 70] and salinity tolerance [71]. As in case of the previous HEB-25

studies, variation in Psh and Ph infection severity was detected between as well as within fami-

lies, clearly indicating the suitability of HEB-25 to not only identify population-wide but also

parent-specific QTL effects for resistance to Psh and Ph (Fig 1A and 1B; S3 File). The high vari-

ation in HEB-25 regarding stripe and leaf rust resistance is expected to be a function of the dif-

ference in the genetic make-up in the elite parent Barke and the wild donor parents. While

wild donors showed in general a higher susceptibility to Psh than to Ph the opposite was true

for the recurrent parent Barke (S5 File).

The evaluation of pathogen resistance in separate field trials for Psh and Ph allowed the

individual phenotypic evaluation of HEB-25 genotypes without a potential bias caused by

simultaneous infection of genotypes with both fungi. The integration of susceptible spreader

strips and the inoculation of these with aggressive Psh and Ph isolates proved to be efficient as

it allowed a clear and reliable differentiation of genotypes that would have been difficult to

achieve under natural infection. This is particularly true for field trials conducted to identify

QTL conferring resistance to Psh, as this fungus is strongly influenced by environmental con-

ditions. We assume that the relatively high broad sense heritabilities (Table 1), which are a pre-

requisite for successful QTL identification, would not have been observed if phenotyping had

been conducted based on natural infection.

The comparison of phenotypic results of the two field trials facilitated the identification of

HEB lines that simultaneously showed a high degree of resistance against Psh and Ph. Out of

these, especially HEB_03_006, HEB_03_015, and HEB_03_142 are valuable candidates to be

integrated into barley pre-breeding programs aiming to simultaneously increase Psh and Ph
resistance, as they are among the top one percent of genotypes regarding resistance to both

pathogens (S3 File). However, next to a high level of resistance, results of earlier studies by

Maurer et al. [69, 70] may be considered during the selection process to select resistant HEB

lines, which combine a suitable resistance with elevated yield parameters. It is expected that

the integration of favorable wild barley alleles into barley breeding programs will be achieved

faster with HEB-25 lines than with wild barley accessions since a backcrossing step with culti-

var Barke was already performed during the development of HEB-25.

The occurrence of opposed wild allele effect estimates of closely linked markers identified

in this study was also observed in previous HEB-25 studies by Maurer et al. [69, 70, 72] and

most likely arises from the fact that not all SNPs segregate in all families. Therefore, markers

are likely to reflect only the mean wild allele effect of a fraction of the full population. As a

result, closely linked markers segregating in different sets of genotypes of the complete popula-

tion can show opposed effect estimates because of different mean resistance levels of the two

sets. Phenotypic results revealed that families differ in their mean resistance level (Fig 1).

Therefore, we assumed that strongly differing sets are likely to be linked to different families

and, thus, opposed effect estimates of closely linked SNPs can be caused by parent-specific

alleles.

Since the focus of this study was to identify robust QTL conferring resistance to Psh and Ph
a rather stringent threshold for the acceptance of marker trait associations was defined. Minor

QTL not passing this threshold but still influencing genotype response to Psh and Ph are not

considered in this study. Defining a less stringent DR threshold of 10%, as applied in the study

of Maurer et al. [70], would have resulted in a considerable higher number of individual QTL

and co-locating QTL for the two rust fungi (Fig 2; S6 File). However, it has to be considered

that with a lower DR threshold the risk of false-positive marker trait associations increases

and, therefore, these minor QTL should be interpreted with caution.

The detection of QTL for resistance against Psh and Ph despite low estimates across the

whole population is a strong proof of the power of the NAM strategy in general and in
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particular the suitability and precision of the NAM model applied in this study (Table 2; S6

File). The mean phenotypic variance explained by the full model and the calculated mean abil-

ity to predict the degree of infection of independent genotypes further supports the suitability

of the applied model (Table 3).

The high number of QTL linked to Psh and Ph resistance detected in this study, the small

CV mean effect estimates, as well as, the low percentage of phenotypic variance explained by the

majority of QTL peak markers indicate a complex inheritance of adult plant resistance for both

pathogens (Table 2; S6 File). QPs.5H-1 with a R2 value of 12.91% is an exception to the generally

low phenotypic variance explained by the majority of QTL peak markers and might indicate the

presence of a major resistance gene. Although there may be few lines carrying a major resistance

gene, results of this study show that resistance in HEB-25 is predominantly polygenic and is the

result of the accumulation of numerous small effect loci with additive effects. Similar results are

reported in studies with other NAM populations focusing on stem rust of wheat [67] and stem

rust, stripe rust, and leaf rust of wheat [68]. In each case, a high number of QTL with small to

medium effects were reported and the authors concluded the nature of resistance to be poly-

genic, with several loci acting additively. However, the maximum allele effect estimates in the

study of Li et al. [68] are higher compared to this study. The same holds true for R2 values in

both studies. It has to be considered that next to being the result of a complex polygenic inheri-

tance of resistance, small population-wide effects of QTL peak markers may also be attributed

to the presence of alleles with differing effects on resistance. Namely, in case only a limited num-

ber of HEB-25 lines of the full population show a strong allele effect on resistance or contrasting

allele effects among the 25 HEB donor parents exist at a marker position.

The importance of considering the influence of differing donor allele effects in HEB-25 on

estimated population-wide QTL peak marker effects is supported by the high variation of

donor allele effects at parent-specific QTL (S7 File). Results of this study are very similar to the

observations made by Bajgain et al. [67] and Li et al. [68] focusing on the identification of QTL

conferring resistance to rust pathogens of wheat by use of the NAM approach. As in this study

the authors identified strongly varying parent-specific allele effects at resistance QTL. There-

fore, studies focusing on detailed analysis of specific QTL or on the integration of Psh and Ph
resistance alleles in modern barley cultivars should take into account the parent-specific QTL

effect information given in this study to select the most promising resistance-carrying HEB

line to be incorporated into a new barley breeding cycle. Not including parent-specific QTL

effect estimates in the selection decision may result in missing alleles whose strong favorable

effect is masked by a high number of parent-specific alleles with an opposed effect (S7 File).

However, it is noteworthy to mention that parent-specific QTL effect estimates may be slightly

biased, as each family comprises only a relatively small number of HEB-25 lines [72]. Thus,

selection decisions should be based on a combined evaluation of population-wide and parent-

specific estimates of wild allele effects.

Most Ph resistance QTL and several of the Psh resistance QTL identified in this study

showed overlap with QTL previously reported to be linked to Ph or Psh resistance (Table 2).

At the same time two QTL for resistance to Ph and eight QTL for resistance to P.s identified in

this study are located at chromosome positions not yet reported to be involved in resistance

against Ph or Psh, respectively. Several of the Ph and Psh resistance QTL, although showing no

overlap with previously reported Ph and Psh resistance QTL, were located in chromosome

regions known to be linked to resistance to Ph or Psh. In case of Ph, resistance QTL QPh.7H-2

is located in the vicinity of leaf rust resistance QTL Rphq8 identified by Qi et al. [27] and Mar-

cel et al. [26] as well as QRph.sun-7H identified by Singh et al. [37]. Likewise, the resistance

QTL QPs.1H-1 and QPs.2H-3 identified in the Psh NAM study are located in a chromosome

region in which Dracatos et al. [44] identified a QTL linked to Psh resistance. Furthermore,
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QTL QPh.7H-2, QPs.3H-1, and QPs.3H-4 each show overlap with a meta-QTL identified by

Schweizer and Stein [94] effective against several fungal barley pathogens. Based on available

data and the QTL intervals defined in this study, all of the 10 QTL identified in this study to

show no overlap (Table 2) should be regarded as potentially novel resistance QTL, harboring

new and yet undiscovered rust resistance genes. It has to be considered, that the majority of

previously reported Ph and Psh QTL were identified using different rust isolates than those

used in this study. Therefore, QTL identified in this study showing overlap with previously

reported Ph or Psh resistance QTL may potentially confer novel resistance alleles at known

rust resistance loci.

Only at three chromosomal locations, QTL for stripe rust and leaf rust resistance co-local-

ized. This finding may indicate the existence of rust specific defense mechanisms in HEB-25

rather than a broad-spectrum species-independent pathogen control. This assumption is also

supported by a low correlation observed between both traits. The clear preponderance of inde-

pendent QTL in HEB-25, either specific for Ph or Psh, is in agreement with Suenaga et al. [95].

The authors detected only one common QTL for leaf rust and stripe rust resistance in wheat. In

contrast, studies by McIntosh [96] and William et al. [97] showed correlated response of wheat

to leaf rust and stripe rust caused by closely linked genes. Likewise, Herrera-Foessel et al. [98]

observed a correlated response to leaf rust and stripe rust of wheat for most of the tested wheat

lines caused by either a single gene or very closely linked genes conferring resistance to both

pathogens. Furthermore, Krattinger et al. [99] identified Lr34, a broad-spectrum non-race-spe-

cific resistance gene that confers resistance to a range of pathogens including leaf rust and stripe

rust of wheat. Next to this, William et al. [100] and Li et al. [68] both reported QTL conferring

resistance to leaf rust and stripe rust of wheat as well as QTL conferring resistance to only one

of the two pathogens. The Ph and Psh resistance QTL located in close proximity to each other

(QPs.2H-1 and QPh.2H-1, QPs.6H-1 and QPh.6H-2, QPs.7H-1 and QPh.7H-3), may represent

regions linked to general resistance to rust fungi, and thus, be combined to meta-QTL. How-

ever, peak markers of co-locating Ph and Psh resistance QTL in HEB-25 showed opposed wild

allele effects (Table 2). This fact points towards the presence of two independent rust pathogen

specific resistance genes located in proximity to each other, rather than the presence of a single

resistance gene conferring resistance to both pathogens. The fact that the three co-localized Ph
and Psh resistance QTL were not identified at the same chromosomal position, but were located

within a distance of 2.5 (2H) to 9.0 (7H) to each other further supports this assumption.

We found a high frequency of leucine-rich repeat, NB-ARC, and serine/threonine-protein

kinase-like genes as putative candidate genes in rust resistance QTL intervals of HEB-25. This

finding is in agreement with the important role of those gene families, known as resistance

gene analogs (RGAs), in various defence reactions of plants against pathogens [101, 102].

Based on this study the definition of a single candidate gene responsible for the detected QTL

effect is not feasible. The final prove, which candidate gene is causing the QTL effect, may be

achieved after a high-resolution mapping within the respective QTL interval has been con-

ducted and the identified candidate genes, co-segregating with the resistance phenotype, have

been knocked-out or genetically engineered. The various putative candidate genes identified

in this study by the use of the BARLEYMAP pipeline and GO-term analysis within the QTL

intervals may serve as a starting point for subsequent studies focusing on the genetic basis of

resistance of barley to Ph and Psh (S2 File).

Conclusion

The results of this study provide valuable information not only for basic studies elucidating the

molecular basis of Psh and Ph resistance in barley, but also for improving Psh and Ph resistance
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and diversity of modern elite barley cultivars. We expect that in future a better understanding

of the allelic diversity present at stripe rust and leaf rust QTL in HEB-25 will be achieved by

generating exome capture based SNP and haplotype data for all HEB lines and 26 HEB parents.

This way, it is expected to achieve more precise estimates of haplotype-based allele effects in

HEB-25 and to increase the power to detect wild barley alleles with favorable effects on barley

resistance against stripe rust and leaf rust.
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rust resistance gene in the former Yugoslavian barley landrace MBR1012. Molecular Breeding. 2012;

30(3):1253–64. https://doi.org/10.1007/s11032-012-9712-0

18. Ziems LA, Hickey LT, Platz GJ, Franckowiak JD, Dracatos PM, Singh D, et al. Characterisation of

Rph24: A gene conferring adult plant resistance to Puccinia hordei in barley. Phytopathology. 2017.

https://doi.org/10.1094/PHYTO-08-16-0295-R PMID: 28430019

19. Niks R, Walther U, Jaiser H, MartInez F, Rubiales D. Resistance against barley leaf rust (Puccinia hor-

dei) in West-European spring barley germplasm. Agronomie. 2000; 20(7):769–82.

20. Perovic D, Stein N, Zhang H, Drescher A, Prasad M, Kota R, et al. An integrated approach for compar-

ative mapping in rice and barley with special reference to the Rph16 resistance locus. Functional &

integrative genomics. 2004; 4(2):74–83.

Identification of QTL for Puccinia striiformis f. sp. hordei and Puccinia hordei resistance by NAM

PLOS ONE | https://doi.org/10.1371/journal.pone.0191666 January 25, 2018 16 / 21

https://doi.org/10.1071/AR07045
https://doi.org/10.1146/annurev-phyto-080614-120324
http://www.ncbi.nlm.nih.gov/pubmed/26047566
http://dx.doi.org/10.1016/j.cropro.2006.12.003
http://dx.doi.org/10.1016/j.cropro.2006.12.003
https://doi.org/10.1111/j.1439-0523.2000.tb01676.x
https://doi.org/10.1094/PHYTO-09-15-0225-R
http://www.ncbi.nlm.nih.gov/pubmed/27213558
https://doi.org/10.1071/AR07130
https://doi.org/10.1007/s10681-008-9814-2
https://doi.org/10.1007/s11032-012-9712-0
https://doi.org/10.1094/PHYTO-08-16-0295-R
http://www.ncbi.nlm.nih.gov/pubmed/28430019
https://doi.org/10.1371/journal.pone.0191666


21. Golan T, Anikster Y, Moseman JG, Wahl I. A new virulent strain of Puccinia hordei. Euphytica. 1978;

27(1):185–9. https://doi.org/10.1007/bf00039134

22. Parlevliet JE. Race-non-specific disease resistance. In: Jenkyn JF, Plumb RT, editors. Strategies for

the control of cereal disease. Oxford: Blackwell Scientific Publishers; 1981. p. 47–54.

23. Steffenson BJ, Jin Y, Griffey CA. Pathotypes of Puccinia hordei with virulence for the barley leaf rust

resistance gene Rph7 in the United States. Plant Disease. 1993; 77:867–9.

24. Shtaya MJY, Sillero JC, Rubiales D. Identification of a new pathotype of Puccinia hordei with virulence

for the resistance gene Rph7. European Journal of Plant Pathology. 2006; 116(2):103–6. https://doi.

org/10.1007/s10658-006-9043-2

25. Schnaithmann F, Kopahnke D, Pillen K. A first step toward the development of a barley NAM popula-

tion and its utilization to detect QTLs conferring leaf rust seedling resistance. Theoretical and Applied

Genetics. 2014; 127(7):1513–25. https://doi.org/10.1007/s00122-014-2315-x PMID: 24797143

26. Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, et al. A high-density consen-

sus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of

defence gene homologues. Theoretical and Applied Genetics. 2007; 114(3):487–500. https://doi.org/

10.1007/s00122-006-0448-2 PMID: 17115126

27. Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P. Isolate-specific QTLs for partial resistance to

Puccinia hordei in barley. Theoretical and Applied Genetics. 1999; 99(5):877–84. https://doi.org/10.

1007/s001220051308

28. Qi X, Niks RE, Stam P, Lindhout P. Identification of QTLs for partial resistance to leaf rust (Puccinia

hordei) in barley. Theoretical and Applied Genetics. 1998; 96(8):1205–15. https://doi.org/10.1007/

s001220050858

29. Kicherer S, Backes G, Walther U, Jahoor A. Localising QTLs for leaf rust resistance and agronomic

traits in barley (Hordeum vulgare L.). Theoretical and Applied Genetics. 2000; 100(6):881–8. https://

doi.org/10.1007/s001220051365

30. Qi X, Fufa F, Sijtsma D, Niks RE, Lindhout P, Stam P. The evidence for abundance of QTLs for partial

resistance to Puccinia hordei on the barley genome. Molecular Breeding. 2000; 6(1):1–9. https://doi.

org/10.1023/a:1009649903383

31. Backes G, Madsen L, Jaiser H, Stougaard J, Herz M, Mohler V, et al. Localisation of genes for resis-

tance against Blumeria graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar

and a wild barley (Hordeum vulgare ssp. spontaneum) line. Theoretical and Applied Genetics. 2003;

106(2):353–62. https://doi.org/10.1007/s00122-002-1148-1 PMID: 12582863
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